

ESAF Dipartimento Territorio e Sistemi Agro-Forestal

A new and sustainable approach for truffle management

Villa Bolasco, Castelfranco Veneto 27th May 2022

Dott.ssa Alessia Sartori Dott. Enrico Vidale Prof. Giai Petit

LI THERE

A general overview....

- Truffles are fungi feeding on carbon exudation;
- Truffle is one of the most economically important nonwood forest production...the market is growing worldwide! (1);
- The natural truffle production is contracting, mainly due to land abandonment and climate change (2);
- Climate changes are altering precipitation patterns (3);
- Huge impacts on tree physiology and on truffle production.

MiPAAF M delle politiche agricole alimentari e forestali (2018) Piano Nazionale Della Filiera del Tartufo 2017-2020. 1–153
IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzer

^{1.} Reyna S, Garcia-Barreda S (2014) Black truffle cultivation: A global reality. For Syst 23:317–328. https://doi.org/10.5424/fs/2014232-04771

STUDY AREA

- TESAF Dipartimento Territorio e Sistemi Agro-Foresta
- Veneto Region
- Vicenza Province
- Surface 2428 m²
- 500 m a.s.l.
- Ostrya carpinifolia Scop. plantation
- Tuber aestivum Vitt.
- Productive and nonproductive plants

STUDY AREA

- **FESAF** Dipartimento Territorio e Sistemi Agro-Foresta
- Veneto Region
- Vicenza Province
- Surface 2428 m²
- 500 m a.s.l.
- Ostrya carpinifolia Scop. plantation
- Tuber aestivum Vitt.
- Productive and nonproductive plants

The focus of our analyses is on the plant's physiological responses to water availability

Sensors...how do they work?

Sensors...how do they work?

Sensors...how do they work?

FESAF Dipartimento Territorio e Sistemi Agro-Forestali

Results

Differences between productive and non-productive plants: non-productive plants have strong periodic fluctuations, compared to productive plants

Results

In non-productive plants, periodic fluctuations are strongly linked to soil moisture. The plant undergoes dehydration (wider fluctuations indicate greater dehydration, **and less osmoregulation**).

In productive plants, the amplitude of daily fluctuations is reduced at the beginning of the season, while it increases in the second part of the season. Soil humidity goes down **under a certain threshold**.

Results

- High production after high water stress and recovery
- High production in June (maximum light)

ELIGERS VAL

ESAF Dipartimento Territorio e Sistemi Agro-Foresta

Conclusions

- Truffle productivity is linked both with environmental parameters and plant's physiological parameters;
- It is possible to improve the productivity of plants and truffles by applying a management model that considers the water stress and recovery cycles;
 - Monitoring the plant means being able to choose when it is necessary to intervene (not always!);
- This new approach could save useful resources (like water) and make truffle cultivation more sustainable (smart use of irrigation and thinning treatment).

Thank you for attention!

